897 research outputs found

    Are the Ogle Microlenses in the Galactic Bar?

    Full text link
    The analysis of the first two years of OGLE data revealed 9 microlensing events of the galactic bulge stars, with the characteristic time scales in the range 8.6<t0<62 8.6 < t_0 < 62 days, where t0=RE/V t_0 = R_E / V . The optical depth to microlensing is larger than (3.3±1.2)×10−6 ( 3.3 \pm 1.2 ) \times 10^{-6}, in excess of current theoretical estimates, indicating a much higher efficiency for microlensing by either bulge or disk lenses. We argue that the lenses are likely to be ordinary stars in the galactic bar, which has its long axis elongated towards us. A relation between t0 t_0 and the lens masses remains unknown until a quantitative model of bar microlensing becomes available. At this time we have no evidence that the OGLE events are related to dark matter. The geometry of lens distribution can be determined observationally when the microlensing rate is measured over a larger range of galactic longitudes, like −10o<l<+10o -10^o < l < +10^o , and the relative proper motions of the galactic bulge (bar) stars are measured with the HST.Comment: 10 pages, 2 figures, revised version accepted for the publication in ApJL, uses AAS LaTeX aaspp.sty macro, PostScript figures and PostScript version of the paper available through anonymous ftp from astro.princeton.edu, directory stanek/tau, or on reques

    Evidence for quantum confinement in the photoluminescence of porous Si and SiGe

    Get PDF
    We have used anodization techniques to process porous surface regions in p-type Czochralski Si and in p-type Si0.85Ge0.15 epitaxial layers grown by molecular beam epitaxy. The SiGe layers were unrelaxed before processing. We have observed strong near-infrared and visible light emission from both systems. Analysis of the radiative and nonradiative recombination processes indicate that the emission is consistent with the decay of excitons localized in structures of one or zero dimensions

    Antisite effect on ferromagnetism in (Ga,Mn)As

    Full text link
    We study the Curie temperature and hole density of (Ga,Mn)As while systematically varying the As-antisite density. Hole compensation by As-antisites limits the Curie temperature and can completely quench long-range ferromagnetic order in the low doping regime of 1-2% Mn. Samples are grown by molecular beam epitaxy without substrate rotation in order to smoothly vary the As to Ga flux ratio across a single wafer. This technique allows for a systematic study of the effect of As stoichiometry on the structural, electronic, and magnetic properties of (Ga,Mn)As. For concentrations less than 1.5% Mn, a strong deviation from Tc ~ p^0.33 is observed. Our results emphasize that proper control of As-antisite compensation is critical for controlling the Curie temperatures in (Ga,Mn)As at the low doping limit.Comment: 10 pages, 7 figure

    Warm Breeze from the starboard bow: a new population of neutral helium in the heliosphere

    Full text link
    We investigate the signals from neutral He atoms observed from Earth orbit in 2010 by IBEX. The full He signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral He that we call the Warm Breeze. The Warm Breeze is approximately two-fold slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ~7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ~19deg from the inflow direction of interstellar gas. The Warm Breeze seems a long-term feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere, which brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. Possible sources for the Warm Breeze include (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He+ ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand of AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud.Comment: submitted to ApJ

    Evolving outer heliosphere: Large-scale stability and time variations observed by the Interstellar Boundary Explorer

    Get PDF
    The first all-sky maps of Energetic Neutral Atoms (ENAs) from the Interstellar Boundary Explorer (IBEX) exhibited smoothly varying, globally distributed flux and a narrow ribbon of enhanced ENA emissions. In this study we compare the second set of sky maps to the first in order to assess the possibility of temporal changes over the 6 months between views of each portion of the sky. While the large-scale structure is generally stable between the two sets of maps, there are some remarkable changes that show that the heliosphere is also evolving over this short timescale. In particular, we find that (1) the overall ENA emissions coming from the outer heliosphere appear to be slightly lower in the second set of maps compared to the first, (2) both the north and south poles have significantly lower (similar to 10-15%) ENA emissions in the second set of maps compared to the first across the energy range from 0.5 to 6 keV, and (3) the knot in the northern portion of the ribbon in the first maps is less bright and appears to have spread and/or dissipated by the time the second set was acquired. Finally, the spatial distribution of fluxes in the southernmost portion of the ribbon has evolved slightly, perhaps moving as much as 6 degrees (one map pixel) equatorward on average. The observed large-scale stability and these systematic changes at smaller spatial scales provide important new information about the outer heliosphere and its global interaction with the galaxy and help inform possible mechanisms for producing the IBEX ribbon

    Locating the nucleation sites for protein encapsulated gold nanoclusters : a molecular dynamics and fluorescence study

    Get PDF
    Fluorescent gold nanoclusters encapsulated by proteins have attracted considerable attention in recent years for their unique properties as new fluorescence probes for biological sensing and imaging. However, fundamental questions, such as the nucleation sites of gold nanoclusters within proteins and the fluorescence mechanism remain unsolved. Here we present a study of the location of gold nanoclusters within bovine serum albumin (BSA) combining both fully atomistic molecular dynamic (MD) simulations and fluorescence spectroscopic studies. The MD simulations show gold clusters growing close to a number of cysteine sites across all three domains of BSA, although just two major sites in domains IIB and IA were found to accommodate large clusters comprising more than 12 atoms. The dependence of the fluorescence on pH is found to be compatible with possible nucleation sites in domains IIB and IA. Furthermore, the energy transfer between tryptophan and gold nanoclusters reveals a separation of 29.7 Å, further indicating that gold nanoclusters were most likely located in the major nucleation site in domain IIB. The disclosure of the precise location of the gold nanoclusters and their surrounding amino acid residues should help better understanding of their fluorescence mechanism and aid their optimization as fluorescent nanoprobes

    Planetary Detection Efficiency of the Magnification 3000 Microlensing Event OGLE-2004-BLG-343

    Full text link
    OGLE-2004-BLG-343 was a microlensing event with peak magnification A_{max}=3000+/-1100, by far the highest-magnification event ever analyzed and hence potentially extremely sensitive to planets orbiting the lens star. Due to human error, intensive monitoring did not begin until 43 minutes after peak, at which point the magnification had fallen to A~1200, still by far the highest ever observed. As the light curve does not show significant deviations due to a planet, we place upper limits on the presence of such planets by extending the method of Yoo et al. (2004b), which combines light-curve analysis with priors from a Galactic model of the source and lens populations, to take account of finite-source effects. This is the first event so analyzed for which finite-source effects are important, and hence we develop two new techniques for evaluating these effects. Somewhat surprisingly, we find that OGLE-2004-BLG-343 is no more sensitive to planets than two previously analyzed events with A_{max}~100, despite the fact that it was observed at ~12 times higher magnification. However, we show that had the event been observed over its peak, it would have been sensitive to almost all Neptune-mass planets over a factor of 5 of projected separation and even would have had some sensitivity to Earth-mass planets. This shows that some microlensing events being detected in current experiments are sensitive to very low-mass planets. We also give suggestions on how extremely high-magnification events can be more promptly monitored in the future.Comment: 50 pages, 13 figures, published in The Astrophysical Journa

    Constraints on Planetary Companions in the Magnification A=256 Microlensing Event: OGLE-2003-BLG-423

    Full text link
    We develop a new method of modeling microlensing events based on a Monte Carlo simulation that incorporates both a Galactic model and the constraints imposed by the observed characteristics of the event. The method provides an unbiased way to analyze the event especially when parameters are poorly constrained by the observed lightcurve. We apply this method to search for planetary companions of the lens in OGLE-2003-BLG-423, whose maximum magnification A_max=256+-43 (or A_max=400+-115 from the lightcurve data alone) is the highest among single-lens events ever recorded. The method permits us, for the first time, to place constraints directly in the planet-mass/projected-physical-separation plane rather than in the mass-ratio/Einstein-radius plane as was done previously. For example, Jupiter-mass companions of main-sequence stars at 2.5 AU are excluded with 80% efficiency.Comment: 10 pages, 7 figures, accepted for publication in The Astrophysical Journa
    • 

    corecore